
1

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name
Object programming [S1Inf1>POB]

Course
Field of study
Computing

Year/Semester
2/3

Area of study (specialization)
–

Profile of study
general academic

Level of study
first-cycle

Course offered in
Polish

Form of study
full-time

Requirements
compulsory

Number of hours
Lecture
16

Laboratory classes
0

Other
0

Tutorials
0

Projects/seminars
30

Number of credit points
3,00

Coordinators
dr inż. Tomasz Koszlajda
tomasz.koszlajda@put.poznan.pl
dr inż. Serhii Baraban
serhii.baraban@put.poznan.pl

Lecturers

Prerequisites
A student starting this subject should have the basic knowledge obtained in the subjects: Introduction to 
Computing and Algorithms and Data Structures. He should have the ability to solve basic problems with 
algorithm specifications, to write, modify and test computer programs independently, as well as the ability 
to obtain information from indicated sources. He should also understand the necessity to expand his 
competencies and have a willingness to cooperate as part of a team. In addition, in terms of social 
competence, the student must present such attitudes as honesty, responsibility, perseverance, cognitive 
curiosity, creativity, personal culture and respect for other people.



2

Course objective
1 Teaching students the principles of creating universal software modules suitable for reusable in various 
programming projects and easy to develop and maintain, by applying the unique solutions available in 
object-oriented languages that favor the creation of computer programs with such characteristics. In 
addition, the goal is to teach students to create their own semantically rich and versatile abstract data 
types. 2.Developing in students the ability to design and create computer systems with a correct 
architecture, i.e., one that is characterized by cohesiveness of the constituent program modules and loose 
relationships between these modules. 3. Developing in students the ability to communicate during the 
independent creation of computer program modules to be composed into a single whole. In addition, 
obtaining skills to find optimal, ready and available components for use in their own complex computer 
programs.

Course-related learning outcomes
Knowledge:
has a structured, theoretically supported general knowledge of algorithms, programming languages and
paradigms, and software engineering, (K1st_W4)
knows and understands generic classes, exception handling in object-oriented languages and is able to
apply these mechanisms to create reusable universal software modules,
guaranteeing the construction of computer programs of high quality, (K1st_W6)
knows and understands the principles of construction of computer programs that process persistent
objects stored in the database, and the principles of construction of programs with complex
multifaceted architecture. (K1st_W6)
Knows the basic methods, techniques and tools used in solving simple tasks
information technology, algorithms and problems, construction of computer systems, implementation
of programming languages and software engineering, (K1st_W7)
has the knowledge necessary to transform object models of fragments of reality into selected object-
oriented languages, (K1st_W7)
has the knowledge necessary for object-oriented modeling and analysis of non-small fragments of the
"real world" related to various fields of application, (K1st_W7)
knows and understands the syntax and semantics of basic and complex object-oriented mechanisms,
such as:
classes, objects, interfaces and object implementation, object encapsulation, class inheritance and
subtype relation, polymorphic variables and substitutions, dynamic binding, (K1st_W7)

Skills:
has the ability to develop computer programs of high quality in accordance with the criteria defined in
ISO standards, and in particular characterized by: reliability, ease of maintenance and development,
flexibility, ease of testing, portability and ease of code sharing, (K1st_U9)
is able to create an object model of a simple system (e.g. in the UML language) (K1st_U10)
is able to choose a programming language suitable for a given programming task (K1st_U10)
is able - according to a given specification - to design and implement a simple information system, using
appropriate methods, techniques and tools (K1st_U11)
has the ability to formulate classes and program them using at least two popular tools, i.e., object-
oriented programming languages: C++ and Java, (K1st_U11)
is able to work in a group (K1st_U18)

Social competences:
understands that in programming languages are dynamically developing and some of the skills related
to programming become obsolete very quickly (K1st_K1)
Is aware of the importance of correct modeling of reality in solving engineering problems and knows
examples and understands the causes of malfunctioning information systems (K1st_K2)

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Formative assessment:
(a) for lectures:
- activity during lectures
b) in terms of project classes:



3

- on the basis of the evaluation of the current progress of the tasks - exercises and the final credit
project
Summative assessment:
a) in terms of lectures, verification of the established learning outcomes is realized by:
- evaluation of knowledge and skills demonstrated in the written assessment
b) in the scope of project classes, verification of the assumed educational effects is realized by:
- evaluation of the realization of final projects

Programme content
Object modeling and analysis. UML in the context of class and object diagrams. Class inheritance and 
subtype relationships between classes. Definition of new features of derived classes, method and variable 
overriding, redeclaration of variables and methods, and implementation of abstract classes. Typical 
examples of generic classes. Creating reliable computer programs. Methodologies and techniques for 
exception handling in object-oriented languages.

Course topics
The program of lectures on the subject includes the following topics:
The rationale of object-oriented programming derived from the analysis of the sources of the software
crisis. The idea of a new programming paradigm that supports the creation of high-quality programs.
The search for an optimal programming language and methodologies appropriate for building reusable
universal software modules. The relationship of the object-oriented paradigm to software engineering.
Quality metrics of computer program architecture: cohesion and independence of of software modules.
Programming languages with an expandable data type system. Implementation of the concept of
abstract data types. A brief overview of the history of object-oriented languages.
Object-oriented modeling and analysis using CRC cards and UML language for class and object diagrams
and collaboration diagrams. Learning the basic constructs of the object-oriented model: class, object,
class variables and operations, generalization relationships, relationships between classes. Examples of
simple models of fragments of reality. Methodologies for modeling and analysis. Transformation of
object-oriented diagrams to object-oriented programming languages.
Definitions of basic object-oriented concepts: object, object attributes (variables), object methods,
sending messages that trigger object method calls, class interfaces, objects as instances of classes,
Examples of class definition including: definitions of class constructors and destructors, overloaded
operators, class variables and methods. Encapsulation of class implementations as a mechanism for
limiting the relationship between software modules. Friendship relationship between classes. A dual
view of the class as a new data type and as a program module. Comparison of solutions of simple
problems in a functional and object-oriented manner. Implementation of complex objects and
relationships between objects. Learning about the types of copy operators of complex objects.
Architecture of an object-oriented virtual machine.
Inheritance of classes and subtype relationship between classes. Definition of new properties of derived
classes, overriding methods and fields, covariant redeclaration of variables and methods, and
implementation of abstract classes. Overview of class inheritance network topologies in various
programming languages. Virtual inheritance in C++. Inheritance of constructors and destructors of
classes. Methodologies for applying the mechanism of class inheritance.
Subtype relationships between classes. Defining polymorphic variables and polymorphic substitutions.
Increasing the versatility and flexibility of classes by using late message binding.
Implementation and examples of use of the late binding mechanism. Late binding, and reflection
mechanisms of data types. Dynamic casting of data types.
Further increasing the degree of universality of classes by defining generic classes. Creating universal
programs while maintaining strong data typing. Limits of applicability of generic classes: bounded and
unbounded generics. Typical examples of generic classes. Class templates in the C++ language.
Developing reliable computer programs. Levels of code security. Basic strategies for creating programs
resistant to errors and exceptions. Methodologies and techniques of exception handling in object-
oriented languages. Defining and reporting exceptions. Exception catching and exception handling.
Examples of exception handling applications. Importance of exception handling for programming
modules intended for reuse.
Methodologies for developing software that conforms to its specification. Formal specification of
semantics of abstract data types. Programming by contract: analysis and programming axioms of classes
and initial and final conditions of methods. Definition and applications for assertions in object-oriented



4

languages.
Ensuring the durability of objects by storing them in a database. Functionality of system software for
object-relational mapping (OR/M). Methodologies of correct mapping of a network of classes into a
relational database schema. Cases of functionally complex programs with intersecting aspects.
Extension of object-oriented languages to explicitly define aspects. Transfer of control between
intersecting aspects. Examples of application of aspect-oriented languages.
The above topics are illustrated with examples in object-oriented programming languages: C++, Java, C#
and Eiffel.
During the project classes, students will learn in depth about two object-oriented languages
programming: C++ and Java. Exercises involve independent development of programs incorporating the
basic constructs of the object-oriented languages presented in lectures. In addition, system libraries are
reworked in terms of: collections, graphical interface, streams, multithreading and serialization of object
state. Familiarization with each of the two programming languages culminates in independent
preparation of small projects involving object-oriented analysis and implementation of programs.
Some of the above-mentioned curricular content is carried out as part of the student's own work.

Teaching methods
Lecture: multimedia presentation, illustrated by examples given on the blackboard.
Project classes: programming tasks, discussion, multimedia demonstration, case study, demonstration,
brainstorming.

Bibliography
Basic:
1. Programowanie zorientowane obiektowo, Bertrand Mayer, Helion, Warszawa, 2005
2. Metody obiektowe w teorii i praktyce, Ian Graham, WNT, Warszawa, 2004
3. Smalltalk-80: The Language and its Implementation, Goldberg A.J., A.D.Robson, Addison-Wesley,
1983
4. Język C++, Bjarne Stroustrup, WNT, Warszawa, 1994
5. The Java(TM) Programming Language (3rd Edition), Ken Arnold, James Gosling, David Holmes,
Addison Wesley Professional, 2000
6. Programowanie obiektowe, Peter Coad, Edward Yourdon, Read Me, 1994
7. Analiza obiektowa, Peter Coad, Edward Yourdon, Read Me, 1994
8. Nowoczesne projektowanie w C++, Andrei Alexandrescu, WNT, 2005

Additional:
1. Simula Begin, Graham M. Birtwistle, O.J. Dahl, B. Myhrhaug, K. Nygaard, 1973
2. http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf
3. http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

Breakdown of average student's workload

Hours ECTS

Total workload 75 3,00

Classes requiring direct contact with the teacher 46 2,00

Student's own work (literature studies, preparation for laboratory classes/
tutorials, preparation for tests/exam, project preparation)

29 1,00


